Ad Code

Class 6 Ratio And Proportion Ex 12.2

1. Determine if the following are in proportion.
(a) 15, 45, 40, 120 
(b) 33, 121, 9,96 
(c) 24, 28, 36, 48 
(d) 32, 48, 70, 210 
(e) 4, 6, 8, 12 
(f) 33, 44, 75, 100 
Solutions: 
 (a) 15, 45, 40, 120 
 \({15 \over 45} = {1 \over 3}\) 
 \({40 \over 120} ={ 1 \over 3}\) 
 Hence, 15: 45 = 40:120 
 ∴ These are in proportion.

 (b) 33, 121, 9, 96 
 \(\dfrac{33 }{ 121} = \dfrac{3 }{ 11}\)
 \(\dfrac{9 }{ 96} = \dfrac{3 }{32}\)
 Hence, 33:121 ≠ 9: 96 
 ∴ These are not in proportion. 
 (c) 24, 28, 36, 48 
 \(\dfrac{24 }{28} = \dfrac{6 }{7}\)
\(\dfrac{ 36}{48 } = \dfrac{ 3}{7}\)
 Hence, 24: 28 ≠ 36:48 
 ∴ These are not in proportion. 
 (d) 32, 48, 70, 210 
\(\dfrac{32 }{48} = \dfrac{2 }{3}\)
\(\dfrac{ 70}{210 } = \dfrac{ 1}{3}\)
 Hence, 32: 48 ≠ 70: 210 
 ∴ These are not in proportion. 
 (e) 4, 6, 8, 12 
\(\dfrac{4 }{6} = \dfrac{2 }{3}\)
\(\dfrac{ 8}{12 } = \dfrac{2 }{3}\)
 Hence, 4: 6 = 8: 12 
 ∴ These are in proportion. 
 (f) 33, 44, 75, 100 
\(\dfrac{33 }{44} = \dfrac{3 }{4}\)
\(\dfrac{ 75}{100 } = \dfrac{3 }{4}\) 
 Hence, 33:44 = 75: 100 
 ∴ These are in proportion. 

 2. Write True ( T ) or False ( F ) against each of the following statements :
 (a) 16 : 24 :: 20 : 30 
(b) 21: 6 :: 35 : 10 
(c) 12 : 18 :: 28 : 12 
(d) 8 : 9 :: 24 : 27 
(e) 5.2 : 3.9 :: 3 : 4 
(f) 0.9 : 0.36 :: 10 : 4 
Solutions: 
 (a) 16: 24 :: 20: 30 
 \({16 \over 24} = {2 \over 3}\) 
\({ 20 \over 30} = {2 \over 3}\) 
 Hence, 16: 24 = 20: 30 
 Therefore, it is true. 

 (b) 21: 6:: 35: 10 
\({21 \over 6} = {7 \over 2}\) 
\({ 35 \over 10 } = {7 \over 2}\)
 Hence, 21: 6 = 35: 10 
 Therefore, it is true. 

 (c) 12: 18 :: 28: 12 
\({12 \over 18} = {2 \over 3}\) 
\({ 28 \over 12} = {7 \over 3}\)
 Hence, 12: 18 ≠ 28:12 
 Therefore, it is false. 

 (d) 8: 9:: 24: 27 
 \({24 \over 27} ={ (3 × 8)\over  (3 × 9)}  = {8 \over 9}\)
 Hence, 8: 9 = 24: 27 
 Therefore, it is true. 

 (e) 5.2: 3.9:: 3: 4 
 \({5.2 \over 3.9} = {4\over 3}\) 
 Hence, 5.2: 3.9 ≠ 3: 4 
 Therefore, it is false. 

 (f) 0.9: 0.36:: 10: 4 
 \({0.9\over 0.36} = {90 \over 36}  = {10\over 4}\)
 Hence, 0.9: 0.36 = 10: 4 
 Therefore, it is true. 

 3. Are the following statements true? 
(a) 40 persons : 200 persons =  15 : ₹ 75 
(b) 7.5 litres : 15 litres = 5 kg : 10 kg 
(c) 99 kg : 45 kg =  44 :  20 
(d) 32 m : 64 m = 6 sec : 12 sec 
(e) 45 km : 60 km = 12 hours : 15 hours 

Solutions: 
 (a) 40 persons : 200 persons = ₹ 15 : ₹ 75 
 \({40 \over 200} = {1\over 5}\) 
 \({15 \over 75} = {1 \over 5 }\) 
 Hence, it is true. 

 (b) 7.5 litres : 15 litres = 5 kg : 10 kg 
 \({7.5 \over 15 } = { 1 \over 2 } \)
 \({5 \over 10 } = { 1 \over 2 } \)
 Hence, it is true. 

(c) 99 kg : 45 kg = ₹ 44 : ₹ 20 
\({ 99 \over 45 } = { 11 \over 5 } \)
\({ 44 \over 20 } = { 11 \over 5 } \)
 Hence, it is true. 

 (d) 32 m : 64 m = 6 sec : 12 sec 
 \({32 \over 64 } = { 1 \over 2 } \)
 \({6 \over 12 } = { 1 \over 2 } \)
 Hence, it is true. 

(e) 45 km : 60 km = 12 hours : 15 hours 
\({ 45 \over 60} = {3 \over 4 } \)
\({ 12 \over15 } = { 4 \over 5} \)
 Hence, it is false. 

4. Determine if the following ratios form a proportion. Also, write the middle terms and extreme terms where the ratios form a proportion. 
(a) 25 cm : 1 m and  40 :  160 
(b)39 litres : 65 litres and 6 bottles : 10 bottles 
(c) 2 kg : 80 kg and 25 g : 625 g 
(d) 200 mL : 2.5 litre and  4 :  50 
Solutions: 
 (a) 25 cm : 1 m and ₹ 40 : ₹ 160 
 25 cm = \(25\over 100\) m = 0.25 m 
 \({0.25 \over 1 }={ 1 \over 4 }\)
 \({40 \over 160 }={ 1 \over 4 }\)
 Yes, these are in proportion. 
 Middle terms are 1 m, ₹ 40, and Extreme terms are 25 cm, ₹ 160.
 
 (b) 39 litres : 65 litres and 6 bottles : 10 bottles 
 \({39 \over 65 }={ 3 \over5 }\)
 \({6 \over 10 }={ 3 \over 5 }\)
 Yes, these are in proportion. 
 Middle terms are 65 litres, 6 bottles, and Extreme terms are 39 litres, 10 bottles. 

 (c) 2 kg : 80 kg and 25 g : 625 g 
 \({2 \over 80 }={ 1 \over 40 }\)
 \({25 \over 625 }={ 1 \over 25}\)
 No, these are not in proportion. 

 (d) 200 mL : 2.5 litre and ₹ 4 : ₹ 50 
 1 litre = 1000 ml 2.5 litre = 2500 ml 
 \({200 \over 2500 }={ 2 \over 25}\) 
 \({4 \over 50 }={ 2 \over 25 }\)
 Yes, these are in proportion. 
 Middle terms are 2.5 litres, ₹ 4, and Extreme terms are 200 ml, ₹ 50.

Post a Comment

0 Comments