Ad Code

Laws of Exponents


Laws of Exponents

We can write large numbers in a shorter form using exponents.

Observe 1000 = 10 × 10 × 10 = 103

The short notation 103 stands for the product 10×10×10. 

Here ‘10’ is called the base and ‘3’ the exponent. 

The number 103 is read as 10 raised to the power of 3 or simply as third power of 10. 

103 is called the exponential form of 1000.

Multiplying Powers with the Same Base:

Let us calculate 22 × 23

22 × 23 = (2 × 2) × (2 × 2 × 2)

             = 2 × 2 × 2 × 2 × 2

             = 25 or 22+3

Note:
That the Base in 22 and 23 is same and the sum of the exponents, i.e., 2 and 3 is 5.

a2 × a4 = (a × a) × (a × a × a × a)
         
            = a × a × a × a × a × a

            = a6

Note:

Base are same and the sum of the exponents is 2 + 4 = 6.

From this we can generalize that for any non-zero integer a where, m and n are whole numbers,

am × an =am+n

Simplify 37 × 34
Use the formula , am × an =am+n

37 × 34 = 37+4

            =311

Dividing Powers with the Same Base:

In general, for any non-zero integer a,

am ÷ an =am-n

where m and n are whole numbers and m > n.

Simplify 37 ÷ 34

Use the formula , am ÷ an =am-n

37 ÷ 34 = 37-4

=33

Power of a Power:

The generalize form for any non-zero integer ‘a’, where ‘m’ and ‘n’ are whole numbers,

 (am)n =amn 

Simplify: (52)3

Using formula, (am)n =amn

(52)3 = 56

       =56

Multiplying Powers with the Same Exponents

In general, for any non-zero integer a

am × bm =(a×b)m  (where m is any whole number)

Simplify :32 × 52

              =(3 × 5)2

              = (15)2

Numbers with exponent 0:

Any number (except 0) raised to the power (or exponent) 0 is 1.

Simplify 37 ÷ 37

Use the formula , am ÷ an =am-n

37 ÷ 34 = 37-4

            =30

            =1

EXAMPLE 

Laws of Exponents

Post a Comment

0 Comments